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Abstract
We give a derivation for the fields of a moving point charge from Jefimenko’s
equations without the usual cumbersome differentiation of retarded quantities.

1. Introduction

A discussion of electric and magnetic fields generated by an arbitrarily moving point charge
is part of all textbooks on electrodynamics. The usual approaches are either to calculate them
from the Lienard–Wiechert potentials or to use the more elegant approach invoking special
relativity [1]. The first, traditional, path is more complicated but, at least for the case of a
charge moving at constant velocity, can be found in all textbooks. In addition, it provides
a satisfying sense of closure to the nonrelativistic domain of a classical theory which is not
complete without generalization to arbitrary velocity. In the most direct, ‘brute force’ form
[2], this method is seldom presented in full detail for an arbitrarily moving charge even in
advanced electrodynamic textbooks because it involves first computing the vector and scalar
potentials and then evaluating the field strengths by taking appropriate derivatives. This forces
one to compute implicitly the derivatives of the retarded time with respect to the position
and time variables; an operation which is extremely cumbersome (some authors even have
said this is a ‘heroic’ calculation). According to Jefimenko [3] it ‘constitutes one of the most
complicated procedures in classical electrodynamic theory’. It is very time consuming and it
is doubtful that such a derivation has actually ever been fully discussed during lectures.

Recently there has been renewed interest in this problem, partially, because of its apparent
calculational complexity. Many authors [4–7] had considered this non-relativistic approach
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as a kind of a test problem to demonstrate the advantage of using Jefimenko’s equations [8]
for direct calculation of electric E and magnetic B fields

E(r, t) =
∫

dr′
(

[ρ(r′, t ′)]R̂
R2

+
∂
∂t

[ρ(r′, t ′)]R̂
cR

−
∂
∂t

[ j(r′, t ′)]
c2R

)
, (1)

B(r, t) =
∫

dr′
(

[ j(r′, t ′)] × R̂
cR2

+
∂
∂t

[ j(r′, t ′)] × R̂

c2R

)
, (2)

where R = r − r′, R = |R|, R̂ = R/R and square brackets denote retarded value which
is a short form for t ′ integration of source function with δ-function

(
δ
(
t − t ′ − R

c

))
. The

computation sometimes is easier if the explicit integral form is retained, as is discussed below.
The advantages of using Jefimenko’s equations were discussed in [4, 5, 9]. They are quite

obvious and are apparent from equations (1) and (2). One can skip the two stage calculations
involving potentials so that spatial derivatives (the longest part in direct calculations with
potentials [2]) are not present. This is a great simplification, especially for calculations with
retarded quantities. Unfortunately, these initial advantages are partially lost in subsequent
calculations of the fields in [4–6, 10, 11] because the direct procedure (as a direct procedure
for potentials) was employed. A more economical method was used previously in calculations
with potentials in [12–14] and, actually, in the derivation of Jefimenko’s equations in [9].

The main idea of this latter approach is, in general, to work with integrals over space
and time to avoid the problem of operating on retarded quantities and, in particular, for point
charges, to perform spatial integrations first. We will demonstrate how this idea can simplify
calculations, but before doing so we would like to make the following comment.

In standard courses we (instructors) are teaching material (results) that is established and
well known. In contrast to research, where a nice derivation is good to have but the interesting
result is much more important, the teaching is not only about the result (what to teach) but also
about its delivery (how to teach), including the search for rigorous, economical and transparent
derivations. From this point of view, the discussion of even a very small improvement in
delivery of standard material is much more important than some complicated calculations that
will be never seen by students. The goal of this paper is to provide an improved derivation
for the fields of a moving particle (point charge) from Jefimenko’s equations which is short,
rigorous, transparent and can be taught in less than one lecture. In the next section we will
present the derivation and compare, in more detail, our approach with previous calculations.

2. Derivation

For a point charge e, the charge ρ and current j densities are given in terms of the δ-function
by

ρ(r, t) = eδ(r − s(t)), (3)

j(r, t) = e
ds(t)

dt
δ(r − s(t)) = v(t)ρ(r, t), (4)

where s(t) is the position of the point charge.
The first rather detailed derivation of the fields of a point charge from Jefimenko’s

equations was presented by Griffiths and Heald [4]. (It is also given in [6].) They started from
equations (1), (2) (i.e., using the retarded charge and current densities), which is not the best
approach because it is necessary to work with retarded quantities and perform integration with
the δ-function of a spatial argument, in which case the change of a vector variable involves quite
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a long calculation of a Jacobian [15]. A better approach is to make the implicit dependence
explicit by evaluating time integral after performing the spatial integration [9, 13, 14].

We first consider the derivation of the electric field E of a moving point particle by using
equation (1). Upon substitution of equations (3), (4) we obtain

E(r, t) = e

∫
dr′

∫
dt ′

δ(r′ − s(t ′))R̂
R2

δ

(
t − t ′ − R

c

)

+ e
∂

∂t

∫
dr′

∫
dt ′

δ(r′ − s(t ′))R̂
cR

δ

(
t − t ′ − R

c

)

− e
∂

∂t

∫
dr′

∫
dt ′

v(t ′)δ(r′ − s(t ′))
c2R

δ

(
t − t ′ − R

c

)
. (5)

Performing the spatial integration, we obtain

E(r, t) = e

∫
dt ′

R̂s

R2
s

δ

(
t − t ′ − Rs

c

)
+ e

∂

∂t

∫
dt ′

R̂s

cRs

δ

(
t − t ′ − Rs

c

)

− e
∂

∂t

∫
dt ′

v(t ′)
c2Rs

δ

(
t − t ′ − Rs

c

)
. (6)

The R in (5) became Rs = r − s(t ′) in (6). The idea behind this method is to perform the
retardation integral at a late stage to postpone the calculations with retarded quantities. The
integration in (6) is easily performed by the change of a single variable [16, 17] or just using
the well-known formula

δ(f (t ′)) =
∑

i

δ(t − ti)∣∣ df

dt ′
∣∣
t ′=ti

, (7)

where ti are the zeros of f (t ′). Applying equation (7) to our case yields∣∣∣∣df

dt ′

∣∣∣∣ =
(

1 +
1

c
R′

s

)
= K =

(
1 − 1

c
v · R̂s

)
, (8)

where the prime on Rs indicates differentiation with respect to t ′. Finally, we obtain

E(r, t) = e

[
R̂s

KR2
s

]
+

e

c

∂

∂t

[
R̂s

KRs

]
− e

c2

∂

∂t

[
v(t ′)
KRs

]
. (9)

Equation (9) is well known, but it is not a final result and still needs the implicit
differentiation to obtain the Lienard–Wiechert fields.

Is this as far as we can go or can we further simplify calculations by postponing the
operations with implicit differentiation? The answer is ‘yes’. Let us return to equation (6).
Putting the t-differentiation inside the integral, remembering that only the δ-function has t in
its argument, and using the following property, which is not difficult to prove by using Fourier
representation of δ-function

∂

∂t ′
δ

(
t − t ′ − Rs

c

)
= ∂

∂t ′

∫
dω exp

{
iω

(
t − t ′ − Rs

c

)}

=
∫

dω iω
∂

∂t ′

(
t − t ′ − Rs

c

)
exp

{
iω

(
t − t ′ − Rs

c

)}

= −
(

1 +
1

c
R′

s

)∫
dω iω exp iω

(
t − t ′ − Rs

c

)

= −
(

1 +
1

c
R′

s

)
∂

∂t
δ

(
t − t ′ − Rs

c

)
,
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we have

∂

∂t
δ

(
t − t ′ − Rs

c

)
= − 1(

1 + 1
c
R′

s

) ∂

∂t ′
δ

(
t − t ′ − Rs

c

)
. (10)

Making the substitution of equation (10) into (6) and carrying out the integration by parts
in the last two terms we obtain

E(r, t) = e

∫
dt ′

(
R̂s

R2
s

+
∂

∂t ′

(
1(

1 + 1
c
R′

s

)
(

R̂s

cRs

− v(t ′)
c2Rs

)))
δ

(
t − t ′ − Rs

c

)
, (11)

where all differentiations are still explicit! Only after performing all operations we, at the final
stage, integrate with respect to t ′

E(r, t) = e

[
1(

1 + 1
c
R′

s

)
(

R̂s

R2
s

+
∂

∂t ′

(
1(

1 + 1
c
R′

s

)
(

R̂s

cRs

− v(t ′)
c2Rs

)))]
. (12)

In obtaining equation (12) all implicit differentiations have been avoided making the derivation
simple, short and transparent.

Similarly, from equation (2) we obtain

B(r, t) = e

[
1(

1 + 1
c
R′

s

)
(

v(t ′) × R̂s

cR2
s

+
∂

∂t ′

(
1(

1 + 1
c
R′

s

) v(t ′) × R̂s

c2Rs

))]
. (13)

Let us calculate only the contribution to the ‘acceleration’ electric field Ea from (12) (i.e.
keeping only terms proportional to V̇, where V(t ′) = v(t ′)/c) to demonstrate the simplicity
and power of this technique

Ea(r, t) = e

c

[
R̂s − V

(1 − V · R̂s)Rs

∂

∂t ′
1

(1 − V · R̂s)
− V̇

(1 − V · R̂s)2Rs

]

= e

c

[
1

(1 − V · R̂s)3Rs

((R̂s − V)V̇ · R̂s − V̇(1 − V · R̂s))

]
, (14)

where, with 1 = R̂s · R̂s , we have

(R̂s − V)V̇ · R̂s − V̇((R̂s − V) · R̂s) = R̂s × {(R̂s − V) × V̇}.

This is exactly the second term in the well-known expression [1] (equation (14.14)):

E(r, t) = e

[
(R̂s − V)(1 − V 2)

(1 − V · R̂s)3R2
s

]
+

e

c

[
R̂s × {(R̂s − V) × V̇}

(1 − V · R̂s)3Rs

]
. (15)

Similarly from equation (13) we obtain ([6], equations (7.37c) and (7.37d))

B(r, t) = e

[
(V × R̂s)(1 − V 2)

(1 − V · R̂s)3R2
s

]
+

e

c

[
(V̇ · R̂s)(V × R̂s) + (V̇ × R̂s)(1 − V · R̂s)

(1 − V · R̂s)3Rs

]
. (16)
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Thus the magnetic field is always perpendicular to E and retarded radius vector

B(r, t) = [R̂s] × E(r, t). (17)

This relation is obvious for ‘velocity’ parts of the fields (compare equations (15), (16))
and for ‘acceleration’ parts it is easy to see from intermediate result (14).

Note that in the literature two slightly different (but, of course, equivalent) forms exist:
∂
∂t

[..] or
[

∂...
∂t ′

]
. The last form is due to Panofsky and Phillips [18] (see also [19]). We used the

first one to demonstrate the connection to traditional derivations, but the second one can also
be used. In addition, it is instructive to do this in another way to demonstrate some properties
of δ-functions. For example, let us consider the last term in equation (5) written in the second
form

−e

∫
dr′

∫
dt ′

∂

∂t ′
{v(t ′)δ(r′ − s(t ′))} 1

c2R
δ

(
t − t ′ − R

c

)
.

Integration by parts with respect to t ′ gives

+e

∫
dr′

∫
dt ′{v(t ′)δ(r′ − s(t ′))} 1

c2R

∂

∂t ′
δ

(
t − t ′ − R

c

)
.

It is incorrect to perform spatial integration in this equation (such would give the wrong
answer) because of the simultaneous presence of time dependence in the argument of the
spatial δ-function and derivative of the second one. We have to eliminate this derivative before
performing the spatial integration,

∂

∂t
δ

(
t − t ′ − R

c

)
= − ∂

∂t ′
δ

(
t − t ′ − R

c

)
.

Now, performing spatial integration, we have

−e

∫
dt ′v(t ′)

1

c2Rs

∂

∂t
δ

(
t − t ′ − Rs

c

)
.

After using equation (10) and finally integrating by parts we immediately recover
equation (12) as we should. This also demonstrates that this approach can even compete
with the relativistic one in terms of simplicity and clarity.

From the literature concerning the application of Jefimenko’s equations for calculation of
fields of a moving charge particle, the result of Bellotti and Bornatici deserves special attention
[7]. The major focus of their article was the alternative derivation of Jefimenko’s equations
based on a Fourier transform method and, as an example of its application, the fields of an
arbitrarily moving point charge were also considered. To calculate the fields they also did not
use equations (1), (2) (the standard form) and went back to (r, ω)-space. The proof provided
is a little bit sketchy and not very transparent but our equations (12), (13) are equivalent to
equations (17), (18) of their article. From the citation search, it looks like their result was
not recognized. Even authors of articles that refer to this work consider it as an alternative
derivation of Jefimenko’s equations only (we have to confess that we also recognized their
result only after performing our derivation) and continue to perform implicit differentiation
in calculating the fields of moving dipoles [20], which is extremely time consuming. This is
especially true for fields of a toroidal dipole that involve the third-order differentiation [21]. It
is hoped that our derivation will prove to be attractive due to its simplicity and for its obvious
advantages in teaching applications as well as for research.

The starting point in our derivation is equations (1), (2). Equations similar to Jefimenko’s
were obtained by Panofsky and Phillips [18] and recently rederived by Heras [20]. Some
attention to these formulae was given by McDonald [19], who also provided a comparison
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between them. The main difference (we do not discuss a derivation here) is the expression for
the electric field

E(r, t) =
∫

dr′
(

[ρ]R̂
R2

+
([ j] · R̂)R̂ + ([ j] × R̂) × R̂

cR2
+

([
∂j
∂t ′

] × R̂
) × R̂

c2R

)
. (18)

This expression makes transparent the transversality of radiational fields (see equation (2))
and is definitely better to use in considering radiation problems. At first glance, it is also
preferable for calculating the total electric field of a moving charge because the structure of
the last term in (18), which looks similar to the structure of the ‘acceleration’ part of (14),
and only in one term do we need to perform differentiation. However, the comparison of
calculations with two expressions shows that Jefimenko’s form is slightly simpler to work
with. We are leaving this as a possible exercise which, in addition, gives as alternatives to
equations (15), (16) expressions derived by the standard method in [22, 23].

Let us also comment on a lesser-known alternative expression for the fields of a point
charge first discovered by Heaviside [24] and rediscovered by Feynman [25] (see also [12,
13]). They are

E(r, t) = e

[
R̂s

R2
s

]
+

e[Rs]

c

∂

∂t

[
R̂s

R2
s

]
+

e

c2

∂2

∂t2
[R̂s], (19)

B(r, t) = e

c

[
R̂s

Rs

]
× ∂

∂t
[R̂s] +

e

c2
R̂s × ∂2

∂t2
[R̂s]. (20)

The peculiarity of equations (19), (20) is obvious. The fields are expressed entirely in
terms of retarded position and their derivatives with respect to time t. These expressions, and
their derivation and generalization were the subject of recent discussions in [5, 10, 11, 14].

We tried, without success, to find the transparent derivation of (19), (20) comparable to
a given derivation of standard equations (15), (16). Looking for possible clues in Feynman’s
book, we found the following comments ([25], footnote on p 21).

‘If you have a lot of paper and time you can try to work it through yourself. We
would, then, make two suggestions: First, don’t forget that the derivatives of r ′

are complicated, since it is a function of t ′. Second, don’t try to derive [original
emphasis] (21.1) [our (19)], but carry out all of the derivatives in it, and then compare
what you get with the E obtained from the potentials (21.33) and (21.34).’

The known derivations of Feynman’s expression look exactly like Feynman’s suggestion
‘ . . . carry out all of the derivatives in it and compare . . . ’ but are presented in inverse order.
The only difference is that the comparison is made not to (15) but to an intermediate result (9).

The main simplifying idea in our derivation is to hide all the derivatives inside ‘retarded
brackets’, the Heaviside–Feynman form, in some sense, works in the opposite way: there is
an increase in the number of derivatives outside brackets (in an attempt to express them only
in terms of position) which is in some sense a step back and makes calculations even more
complicated.

The presence of three terms in (19), which are, according to [12], especially useful
because each term may be given a physical interpretation, is not a special characteristic of the
Heaviside–Feynman expression. The standard equation (15) can also be presented as a sum
of three terms. Moreover, the generalization of Heaviside–Feynman form for the case of a
moving dipole leads to a term with no satisfactory physical interpretation [11, 12]. In addition,
it seems that the analysis of some standard and important special cases, for example, V̇ ⊥ V



The fields of a moving point charge: a new derivation from Jefimenko’s equations 349

and V̇‖V, is easy to perform with the standard expressions, as well as the calculation of power
and angular distribution of radiation from a moving point particle, etc. These expressions,
thus, are of a limited interest for teaching and for calculations, and we probably have to follow
Feynman’s advice: ‘don’t try to derive’!

3. Conclusion

We have presented a straightforward and economical treatment of the derivation of the electric
and magnetic fields of a moving point charge without recourse to implicit differentiation
of retarded quantities, by making use of the general solution of Maxwell’s equations in
Jefimenko’s form and a wise choice of the order of operations.

The derivation does not involve knowledge of methods that go beyond those usually at
the disposal of undergraduate students, provides an illustration of some properties of the δ-
function known to students from a first course in quantum mechanics, and gives an excellent
example of when it is sometimes better to use the solution in the most general form and not
to always attempt direct calculations. This result can be presented in one lecture in a very
transparent way, in contrast to direct calculation with potentials.

Furthermore, it is felt that this approach can compete with the relativistic one in its clarity
and computational advantages, and can make substantial simplifications in computationally
more advanced problems [10, 11, 20, 21, 26].
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